5,901 research outputs found

    Statistical mechanics of damage phenomena

    Full text link
    This paper applies the formalism of classical, Gibbs-Boltzmann statistical mechanics to the phenomenon of non-thermal damage. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. Stochastic topological behavior in the system is described in terms of an effective temperature parameter thermalizing the system. An equation of state and a topological analog of the energy-balance equation are obtained. The formalism of the free energy potential is developed, and the nature of the first order phase transition and spinodal is demonstrated.Comment: Critical point appeared to be a spinodal poin

    Electronic band structure, Fermi surface, and elastic properties of new 4.2K superconductor SrPtAs from first-principles calculations

    Full text link
    The hexagonal phase SrPtAs (s.g. P6/mmm; #194) with a honeycomb lattice structure very recently was declared as a new low-temperature (TC ~ 4.2K) superconductor. Here by means of first-principles calculations the optimized structural parameters, electronic bands, Fermi surface, total and partial densities of states, inter-atomic bonding picture, independent elastic constants, bulk and shear moduli for SrPtAs were obtained for the first time and analyzed in comparison with the related layered superconductor SrPt2As2.Comment: 8 pages, 4 figure

    Theoretical backgrounds of durability analysis by normalized equivalent stress functionals

    Get PDF
    Generalized durability diagrams and their properties are considered for a material under a multiaxial loading given by an arbitrary function of time. Material strength and durability under such loading are described in terms of durability, safety factor and normalized equivalent stress. Relations between these functionals are analysed. We discuss some material properties including time and load stability, self-degradation (ageing), and monotonic damaging. Phenomenological strength conditions are presented in terms of the normalized equivalent stress. It is shown that the damage based durability analysis is reduced to a particular case of such strength conditions. Examples of the reduction are presented for some known durability models. The approach is applicable to the strength and durability description at creep and impact loading and their combination

    Applicability and non-applicability of equilibrium statistical mechanics to non-thermal damage phenomena: II. Spinodal behavior

    Full text link
    This paper investigates the spinodal behavior of non-thermal damage phenomena. As an example, a non-thermal fiber-bundle model with the global uniform (meanfield) load sharing is considered. In the vicinity of the spinodal point the power-law scaling behavior is found. For the meanfield fiber-bundle model the spinodal exponents are found to have typical meanfield values.Comment: Version related: More careful explanation for the critical slowing-down. General: The topological properties of non-thermal damage are described by the formalism of statistical mechanics. This is the continuation of arXiv:0805.0346. Comments, especially negative, are very welcom

    Failure Processes in Elastic Fiber Bundles

    Full text link
    The fiber bundle model describes a collection of elastic fibers under load. the fibers fail successively and for each failure, the load distribution among the surviving fibers change. Even though very simple, the model captures the essentials of failure processes in a large number of materials and settings. We present here a review of fiber bundle model with different load redistribution mechanism from the point of view of statistics and statistical physics rather than materials science, with a focus on concepts such as criticality, universality and fluctuations. We discuss the fiber bundle model as a tool for understanding phenomena such as creep, and fatigue, how it is used to describe the behavior of fiber reinforced composites as well as modelling e.g. network failure, traffic jams and earthquake dynamics.Comment: This article has been Editorially approved for publication in Reviews of Modern Physic

    Scaling of Crack Surfaces and Implications on Fracture Mechanics

    Full text link
    The scaling laws describing the roughness development of crack surfaces are incorporated into the Griffith criterion. We show that, in the case of a Family-Vicsek scaling, the energy balance leads to a purely elastic brittle behavior. On the contrary, it appears that an anomalous scaling reflects a R-curve behavior associated to a size effect of the critical resistance to crack growth in agreement with the fracture process of heterogeneous brittle materials exhibiting a microcracking damage.Comment: Revtex, 4 pages, 3 figures, accepted for publication in Physical Review Letter
    • …
    corecore